The figure shows a completely balanced system comprising three 20 kg mass discs A, B and C. Some modifications have been done to discs A and C. At disc A, a mass of 0.4 kg is added at radius of 0.4 m and direction 90°. At disc C, a mass of 0.2 kg is removed at radius of 0.5 m and direction 180°. Determine

- a. the dynamic force acting on bearings X and Y if the shaft is rotating at 3000 rpm.
- b. the magnitude and direction of masses to be added at discs *B* and C each at radius 0.2 m in order to balance the system.

Plane	m	r	mr	d	mrd	θ
А	0.4	0.4	0.16	- 0.1	- 0.016	90°
L			(mr)∟	0	0	θL
С	- 0.2	0.5	- 0.1	0.2	- 0.02	180°
R			(mr) _R	0.3	0.3 (mr) _R	$ heta_{\!R}$

SOLUTION

(<i>e</i> k start	
0.016	0.3 (n	nr) _R
	β	
	0.02	end

($0.3 \ (mr)_{R} = \sqrt{0.016^2 + 0.02^2} = 0.0256$
	(<i>mr</i>) _{<i>R</i>} = 0.0854 kg⋅m
,	$\beta = \tan^{-1}(0.016/0.02) = 38.66^{\circ}$
(<i>θ</i> _R = 360° − 38.66° = 321.34°
ŀ	$F_R = (mr)_R \omega^2 = 0.0854 [2\pi (3000)/60]^2 = 8428.6 \text{ N}$

Plane	m	r	mr	d	mrd	θ
А	0.4	0.4	0.16	0.4	0.064	90 °
L			(mr)∟	0.3	0.3 (mr)∟	θL
С	- 0.2	0.5	- 0.1	0.1	- 0.01	1800
R			(mr) _R	0	0	$ heta_{R}$

0.01 end 0.3 (mr)L start

0.3 $(mr)_R = \sqrt{0.064^2 + 0.01^2} = 0.0216$ $(mr)_R = 0.0854 \text{ kg·m}$ $\theta_R = \tan^{-1}(0.064/0.01) = 81.1^\circ$ $F_R = (mr)_R \ \omega^2 = 0.216 \ [2\pi(3000)/60]^2 = 21318 \text{ N}$

Plane	m	r	mr	d	mrd	θ
А	0.4	0.4	0.16	- 0.2	- 0.032	90°
В	mβ	0.2	0.2 m _B	0	0	θ
С	- 0.2	0.5	- 0.1	0.1	- 0.01	180°
С	тc	0.2	0.2 mc	0.1	0.02 mc	$ heta_{\!R}$

Plane	m	r	mr	d	mrd	θ
А	0.4	0.4	0.16	0.3	0.048	9 0°
В	mβ	0.2	0.2 m _B	01	0.02 m _B	θL
С	- 0.2	0.5	- 0.1	0	0	180°
С	mc	0.2	0.2 m _C	0	0	$ heta_{\!R}$

0.02 (mr)_L = 0.048 (mr)_L = 2.4 kg·m

*θ*_R = 270°

b.

A 6-cylinder engine has an equal dimension of crank radius r, connecting rod L, piston mass m and rotating at an angular speed ω . Investigate the balance condition if the engine is developed as

- a 4-stroke in-line engine with firing order 162534.
 Distances between cylinders are equal.
- b. a radial engine with the cylinder arrangement as shown.

SOLUTION

```
a. For a 4 stroke 6 cylinder engine
Crank angle: \theta = 720^{\circ}/6 = 120^{\circ}
2\theta = 240^{\circ}
```


Plane	m	r	mr	d	mrd
1	m	r	mr	-5d	–5mrd
2	m	r	mr	-3d	–3mrd
3	m	r	mr	–d	–mrd
4	m	r	mr	d	mrd
5	m	r	mr	3d	3mrd
6	m	r	mr	5d	5mrd

For firing order 162534

Secondary crank

Primary Force (refer θ and mr)

Secondary Force (refer to 2θ and mr)

end

b. Radial Engine

Primary Force Unbalanced = = $3 mr \omega^2 N \cdot m$

Secondary Direct

Secondary Direct Balanced

Primary Reverse 1, 4 2, 5 3, 6

Primary Reverse Balanced

Secondary Reverse

Secondary Reverse Balanced

The figure shows a crank effort diagram for a 4 stroke engine. A constant torque is supplied to the load while the engine is running at a mean speed of 200 rpm. Determine

- a. the mean torque and power of the engine.
- b. the maximum fluctuation in energy for 1 cycle.
- c. if the mass moment of inertia of the flywheel is
 1900 kg·m², find the maximum and minimum
 speed for 1 cycle.

SOLUTION

Area LHS = Area RHS

$$\frac{1}{2}(-860)(\pi) + \frac{1}{2}(-3250)(\pi) + 7000(\pi) + \frac{1}{2}(-1240)(\pi) = T_{mean}(4\pi)$$

 $(-430 - 1625 + 7000 - 620)(\pi) = T_{mean}(4\pi)$
 $T_{mean} = 1081.25 \pi$

a. Mean Torque = 1081.25 N·m

Engine Power = $T_{mean} \omega_{mean}$ = 1081.25 [2 π (200)/60] = 22.645.6 kW

Super impose the two graphs

Area below T_{mean} = Area above T_{mean}

Area a + Area c = Area b

Area $a = 1081.25 (2\pi) + 430\pi + 1625\pi = 4217.5\pi$ Area $c = 1081.25 \pi + 620\pi = 1701.25\pi$ OK Area b = $(7000 - 1081.25)4\pi = 5918.75\pi$

Fluctuation of Energy in 1 cycle Let the Energy at A = UEnergy at $B = U - a = U - 4217.5\pi$ minimum E Energy at $C = U - a + b = U - 4217.5\pi + 5918.75\pi = U + 1701.25\pi$ maximum E Energy at $C = U - a + b - c = U + 1701.25\pi - 1701.25\pi = U$

b. Maximum Fluctuation of Energy in 1 cycle (β E) = (U + 1701.25 π) – (U – 4217.5 π) = 5918.75 π = 18,594.3 N·m

c. Mass moment of Inertia of Flywheel, $I = \frac{\beta E}{\alpha \omega_{mean}^2}$

$$1900 = \frac{5918.25\pi}{\alpha \left(\frac{2\pi(200)}{60}\right)^2}$$

Coefficient of fluctuation of speed, $\alpha = 0.0223$

$$N_{mean} = \frac{N_{max} + N_{min}}{2} \qquad N_{max} + N_{min} = 400 \quad (1)$$

$$\alpha = \frac{N_{max} - N_{min}}{N_{mean}} \qquad N_{max} - N_{min} = 8.92 \quad (2)$$

The figure shows a compound epicyclic gearset. The two gears S1 and S2 are integral with the input shaft *I*. The planet *P*1 revolves on a pin attached to the arm *L* which is integral with the output shaft *O*. The number of teeth are, t_{s1} = 22 ; t_{s2} = 31 ; t_{A1} = 88 ; t_{A2} = 93 and the gear efficiency is 90%. If the input power to the driving shaft is 22.5 kW at + 3000 rpm, calculate

- a. the speed of shaft O (N_{O}) if gear A1 is rotating at 2000 rpm.
- b. The output torque (T_0) , input torque (T_i) and braking torque (T_b) if gear A1 is fixed.