The figure shows a completely balanced system comprising three 20 kg mass discs *A*, *B* and *C*. Some modifications have been done to discs *A* and *C*. At disc *A*, a mass of 0.4 kg is added at radius of 0.4 m and direction 90°. At disc C, a mass of 0.2 kg is removed at radius of 0.5 m and direction 180°. Determine

- a. the dynamic force acting on bearings X and Y if the shaft is rotating at 3000 rpm.
- b. the magnitude and direction of masses to be added at discs *B* and *C* each at radius 0.2 m in order to balance the system.

0.3 (*mr*)*^L* start end 0.064 0.01 θ

0.3
$$
(mr)_R = \sqrt{0.064^2 + 0.01^2} = 0.0216
$$

\n $(mr)_R = 0.0854 \text{ kg} \cdot \text{m}$
\n $\theta_R = \text{tan}^{-1}(0.064/0.01) = 81.1^\circ$
\n $F_R = (mr)_R \omega^2 = 0.216 [2\pi(3000)/60]^2 = 21318 \text{ N}$

 0.02 (*mr*) $_L = 0.048$ (*mr*)*^L* = 2.4 kgm

 $\theta_R = 270^\circ$

b.

A 6–cylinder engine has an equal dimension of crank radius *r*, connecting rod *L*, piston mass *m* and rotating at an angular speed ω . Investigate the balance condition if the engine is developed as

- a. a 4–stroke in–line engine with firing order 162534. Distances between cylinders are equal.
- b. a radial engine with the cylinder arrangement as shown.

SOLUTION

a. For a 4 stroke 6 cylinder engine Crank angle: $\theta = 720^{\circ}/6 = 120^{\circ}$ 2θ = 240 \circ

For firing order 162534

Primary Force (refer θ and *mr*) Secondary Force (refer to 2 θ and *mr*)

b. Radial Engine

Primary Force Unbalanced **Primary Reverse Balanced**

 $= 3 m r \omega^2 N \cdot m$

1, 4 2, 5 $\Big\}$ 73, 6

Secondary Direct **Secondary Reverse**

Secondary Direct Balanced Secondary Reverse Balanced

The figure shows a crank effort diagram for a 4 stroke engine. A constant torque is supplied to the load while the engine is running at a mean speed of 200 rpm. Determine

- a. the mean torque and power of the engine.
- b. the maximum fluctuation in energy for 1 cycle.
- c. if the mass moment of inertia of the flywheel is 1900 kg·m², find the maximum and minimum speed for 1 cycle.

SOLUTION

Area LHS = Area RHS
\n
$$
\frac{1}{2}(-860)(\pi) + \frac{1}{2}(-3250)(\pi) + 7000(\pi) + \frac{1}{2}(-1240)(\pi) = T_{mean}(4\pi)
$$
\n
$$
(-430 - 1625 + 7000 - 620)(\pi) = T_{mean}(4\pi)
$$
\n
$$
T_{mean} = 1081.25 \pi
$$

a. Mean Torque = 1081.25 N \cdot m

Engine Power = *Tmean mean* = 1081.25 [2 (200)/60] = 22.645.6 kW

Super impose the two graphs

Area below *Tmean* = Area above *Tmean*

Area *a* + Area *c* = Area *b*

Area *a* = 1081.25 (2π) + 430 π + 1625 π = 4217.5 π Area *b* = (7000 – 1081.25) 4π = 5918.75 π Area *c* = 1081.25 π + 620 π = 1701.25 π **OK**

Fluctuation of Energy in 1 cycle Let the Energy at *A* = *U* Energy at $B = U - a = U - 4217.5\pi$ minimum E Energy at $C = U - a + b = U - 4217.5\pi + 5918.75\pi = U + 1701.25\pi$ maximum E Energy at $C = U - a + b - c = U + 1701.25\pi - 1701.25\pi = U$

b. Maximum Fluctuation of Energy in 1 cycle $(\beta E) = (U + 1701.25\pi) - (U - 4217.5\pi)$ $= 5918.75 \pi = 18.594.3 \text{ N} \cdot \text{m}$

c. Mass moment of Inertia of Flywheel, $I = \frac{P}{\alpha a^2}$ *mean E* $\alpha\omega$ β l

$$
1900 = \frac{5918.25\pi}{\alpha \left(\frac{2\pi(200)}{60}\right)^2}
$$

Coefficient of fluctuation of speed, α = 0.0223

$$
N_{mean} = \frac{N_{max} + N_{min}}{2}
$$

\n
$$
\alpha = \frac{N_{max} - N_{min}}{N_{mean}}
$$

\n
$$
N_{max} - N_{min} = 8.92
$$
 (1)

$$
(1) + (2) \t 2 N_{max} = 408.92
$$

$$
N_{max} = 204.46 \text{ rpm}
$$

$$
(1) - (2) \t 2 N_{min} = 391.08
$$

$$
N_{min} = 195.54
$$
 rpm

The figure shows a compound epicyclic gearset. The two gears *S*1 and *S*2 are integral with the input shaft *I*. The planet *P*1 revolves on a pin attached to the arm *L* which is integral with the output shaft *O*. The number of teeth are, *tS*1= 22 ; *tS*2= 31 ; *tA*1= 88 ; *tA*2= 93 and the gear efficiency is 90%. If the input power to the driving shaft is 22.5 kW at + 3000 rpm, calculate

- a. the speed of shaft *O* (*NO*) if gear *A*1 is rotating at 2000 rpm.
- b. The output torque (*TO*), input torque (*Ti*) and braking torque (*Tb*) if gear *A*1 is fixed.